数学家故事(简短一点)?
①工作到最后一天的华罗庚:
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。
他对数论有很深的研究,得出了著名的华氏定理。记者在一次采访时问他:“你最大的愿望是什么?” 他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。
②莱昂哈德·欧拉小时候他就特别喜欢数学,不满10岁就开始自学连老师都没读过的《代数学》,读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。13岁时,靠自己的努力考入了巴塞尔大学,得到当时最有名的数学家约翰·伯努利的精心指导,后来成为了伟大的数学家。
③高斯10岁的时候,进入了学习数学的班级,数学教师是布特纳,他对高斯的成长也起了一定作用。一天,老师布置了一道题“1+2+3······这样从1一直加到100等于多少”。高斯很快就算出了答案,令老师对他刮目相看,还买了算数书送给高斯,后来高斯成为了杰出的数学家。
④当时叙拉古城遭到了罗马军队的偷袭,而叙拉古城的青壮年和士兵们都上前线去了,万分危急的时刻,阿基米德让妇女和孩子们每人都拿出自己家中的镜子一齐来到海岸边,让镜子把强烈的阳光反射到敌舰的主帆上,千百面镜子的反光聚集在船帆的一点上,船帆燃烧起来了,火势趁着风力,越烧越旺,罗马人就慌慌张张地逃跑了,被称为“阿基米德是神话中的百手巨人”。
⑤1973年,陈景润发表了著名论文《大偶数表为一个素数与不超过两个素数乘积之和》,把几百年来人们未曾解决的哥德巴赫猜想的证明大大推进了一步,引起轰动,被命名为“陈氏定理”。他有着超人的勤奋和顽强的毅力,多年来孜孜不倦地致力于数学研究,废寝忘食,成为一代又一代青少年心目中传奇式的人物和学习楷模。
数学家的故事(不超过50字)?
1785年,8岁的小高斯在德国农村的一所小学里念一年级。数学老师是城里来的。他有一个偏见,总觉得农村孩子不如城里孩子聪明。不过,他对孩子们的学习,还是严格要求的。他最讨厌在课堂上不专心听讲、爱做小动作的学生,常常用鞭子敲打他们。孩子们很爱听他的课,因为他经常讲一些非常有趣的东西。
有一天,他出了一道算术题。他说:“你们算一算,1加2加3,一直加到100等于多少?谁算不出来,就不准回家吃饭。”说完,他就坐在椅子上,用目光巡视着趴在桌上演算的学生。不到一分钟的工夫,小高斯站了起来,手里举着小石板,说:“老师,我算出来了……”没等小高斯说完,老师就不耐烦的说:“不对!重新再算!”
小高斯很快的检查了一遍,高声说:“老师,没错!”说着走下座位,把小石板伸到老师面前。老师低头一看,只见上面端端正正的写着“5050",不禁大吃一惊。他简直不敢相信,这样复杂的数学题,一个8岁的孩子,用不到一分钟的时间就算出了正确的得数。要知道,他自己算了一个多小时,算了三遍才把这道题算对的。
他怀疑以前别人让小高斯算过这道题。就问小高斯:“你是怎么算的?”小高斯回答说:“我不是按照1, 2, 3的次序一个一个往上加的。老师,你看,一头一尾的两个数的和都是一样的:1加100是101, 2加99时101, 3加98也是101.....一前一后的数相加,一共有50个101, 101乘50,得到5050。”
小高斯的回答使老师感到吃惊。因为他还是第一次知道有这种算法。他惊喜的看着小高斯,好像刚刚才认识这个穿着破烂不堪的,砌砖工人的儿子。
不久,老师专门买了一本数学书送给小高斯,鼓励他继续努力,还把小高斯推荐给当地教育局,使他得到免费教育的待遇。后来,小高斯成为了世界著名的数学家。人们为了纪念他,把他的这种计算方法称为“高斯定理”。
这个计算题相信大家在数学学习中都有所涉猎了,这还只是高斯其中一个较小的成就,他在数学上的成就颇多。希望同学们在以后的学习中能够活学活用,发散思维。
数学名人的故事50字
数学家的故事——祖冲之
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以“径一周三“做为圆周率,这就是“古率“.后来发现古率误差太大,圆周率应是“圆径一而周三有余“,不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--“割圆术“,用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的“割圆术“方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率“.
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:“幂势既同,则积不容异.“意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理“.
这成么?
关于无理数的发现
古希腊的毕达哥拉斯学派认为,世间任何数都可以用整数或分数表示,并将此作为他们的一条信条.有一天,这个学派中的一个成员希伯斯(Hippasus)突然发现边长为1的正方形的对角线是个奇怪的数,于是努力研究,终于证明出它不能用整数或分数表示.但这打破了毕达哥拉斯学派的信条,于是毕达哥拉斯命令他不许外传.但希伯斯却将这一秘密透露了出去.毕达哥拉斯大怒,要将他处死.希伯斯连忙外逃,然而还是被抓住了,被扔入了大海,为科学的发展献出了宝贵的生命.希伯斯发现的这类数,被称为无理数.无理数的发现,导致了第一次数学危机,为数学的发展做出了重大贡献.